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Why?
 Neutrino oscillation experiments need to accurately reconstruct Eν

 Nuclear effects can shift reconstructed E  ν from true Eν, can alter the content and 
kinematics of the particles in the final state

 In some experiments, near and far detector are constructed from different materials. 
 This requires an understanding of how nuclear effects change in heavier nuclei

 An important interaction for many experiments is charged current quasi-elastic 
scattering (CCQE).  Studying nuclear effects this channel will help improve the 
precision of their measurements  

T2K Near Detector (Carbon) T2K Far Detector (Water) Proposed Dune Near Detector?
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Nuclear Effects
 There are a large multitude of nuclear effects that 

can modify the final state particles of the interaction
 Fermi motion

 Pauli blocking

 Multinucleon interactions (2p2h, RPA)

 Final state interactions
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MINERvA Detector
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Nuclear Targets Region in MINERvA

 Measuring cross sections in the same detector allows us to cancel systematics 
uncertainties, such as flux and detector response
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Looking at the nucleus

Lepton
 Provides information on the initial state of the 

nucleons within the nucleus

 Initial State Interactions:
 Relativistic Fermi gas Model

 Local Fermi Gas Model

 Spectral Functions

 Correlated Nucleons (RPA, MEC, SRC...)

Hadron
 Undergoes final state interactions within the 

nucleus
 After the interaction, previously correlated 

nucleon pair can also experience FSI

 By comparing to muon kinematics, allows 
isolation of final state effects
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Proton Kinematics in Quasi Elastic Scattering
 Previously, MINERvA published the first differential cross section as a function of Q2 

determined from the proton, Phys. Rev. D. 91, 071301 (2015)

 We have updated the measurement with the latest flux prediction and the latest 
simulation

 Qp
2  is reconstructed using the leading proton kinematics

 Using the QE hypothesis and assume scattering from a free nucleon at rest

 At least one proton ≥ 450 MeV

Qp
2 = (Mn – ϵB)

2 – Mp
2 + 2(Mn – ϵB)(Tp + MP – Mn + ϵB)

● Mn,p= nucleon mass
● ϵB= effective binding energy of nucleon 
● Tp= proton kinetic energy
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GENIE
 Lately, we have implemented several improvements in modeling neutrino 

interactions.  A large thanks to the GENIE collaboration!

 This analysis used GENIE (2.8.4) Monte Carlo generator, which generates neutrino 
events and is used by many experiments

 Added RPA to GENIE by reweighting QE events, PRC 70, 055503

 Modify non-resonance pion production to agree with deuterium data, Rodrigues P., 
Wilkinson C. & McFarland K. Eur. Phys. C (2016) 76:474

 For QE-like 2p2h processes, we included one of the theoretical predictions and the 
latest implementation of Valencia model arXiv: 1601.02038, PRC 83, 045501 
(2011) 

● Reweighted 2p2h events using a 2D 
Gaussian defined in true variables 
(q0,q3), where  the parameters are fit to 
get the best agreement between data 
and MC

● For more info, see Jeffrey Kleykamp’s 
upcoming talk!
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1) One muon

2) No pions

3) At least one proton with momentum > 450 MeV/c

CCQE Like Signal
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 At least two reconstructed tracks
 One muon candidate

 At least one proton candidate that stop in the detector

 Interaction vertex is reconstructed in the target material

 Proton particle identification score cut: removes events with pions

 Extra energy cut far from the vertex: remove inelastic events with untracked pion

 Michel electron cut: remove events with low energy pions

Event Selection
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Selecting Proton Candidates (Proton PID Cut)
 Require events with at least one proton candidate

 Fit each hadron track energy loss (dE/dX) profile to both proton and pion loss profiles

 Using χ2/dof from the proton and pion fits, create a score and select the proton candidate
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Removing Background Events 
 Define a variable called unattached visible energy, which is the sum of the energy outside 

of the sphere (r=10cm) centered on the interaction vertex

 Looking for untracked particles produced from high recoil events

 Signal and background have different distributions in Qp
2 vs unattached visible energy, can 

be use to reject background
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Michel Electron Cut
 Remove events with michel electrons

 Helps remove low energy pions
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Selected Sample and Background

 Looking at our selected sample, ~30% pion production through baryon resonances 

 ~10% are Deep Inelastic Scattering (DIS)

 Two main backgrounds
 Scinitllator: mis-reconstructed events which occurred outside the nuclear targets 

 Non CCQE-like: pions have been misidentified as protons
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 The distributions outside the target z cut are dominated by scintillator events

 Regions outside the fiducial volume are used to constrain the scintillator background

 Fit the distributions outside the z cut for each target separately and extract a scale 
factor for the scintillator background

Constraining the Scintillator Background
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 Taking the distribution of unattached visible energy for event passing the proton pID 
in the tracker, separate the sample into two different bins of Q2

 Keeping the signal constant, allow the background to float in a fit in the background 
dominated region

Constraining Non CCQE-Like Background
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Reconstructed Proton Q2

 After all the previous cuts, with tuned background

 Distributions contain the background from the scinitillator
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Coplanarity Angle

 In the MC, FSI affects the width of the peak
 Data agrees with simulation with FSI

 Discrepancy between Data/MC at peak 
increases with A

 After all the cuts, with tuned background, first look at FSI effects

 One can study the coplanarity angle to isolate nuclear effects

 With no FSI and target nucleon at rest, coplanarity angle = 180. Any deviation is due to the 
nuclear medium
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Differential cross section measurements
 Both NuWro and GENIE include 2p2h effects and RPA

 Data favors the FSI with A-dependence predicted by the NuWro generator 
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Ratio of Differential Cross Sections  
 These are the first CCQE measurements in the nuclear targets to study Qp

2 dependence 
of nuclear effects

 Ratios help reduce systematics uncertainties (ie. flux)

 Shows the A-dependence in nuclear effects
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Conclusions and Future
 Oscillations experiments depend of modeling nuclear effects correctly for precision oscillation measurements!

 We have shown new measurements of quasi-elastic like events on multiple nuclei (carbon, iron, lead) in an 
identical neutrino beam

 Previous studies have looked at nuclear effects using different variables with a muon+proton sample (arXiV: 
1608.04655)

 Comparisons between different nuclei can probe FSI and 2p2h effects

 Data also prefers the FSI with A-dependence that NuWro predicts

 Many exclusive channel measurements will be performed in the NuMI medium energy beam, yielding higher 
statistics and a larger Q2 range
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Thanks For Listening
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Backup Slides
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NuMI Flux
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Neutrino Electron Scattering Constraint
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A-dependence in GENIE and NuWro

 The one pion absorption difference between GENIE and NuWro is contributing to the 
A dependence

(Adèle Exarchopoulos fr
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2p2h and RPA Comparisons

 This is solely to show effect of three different models: no 2p2h, 2p2h, and 2p2h + 
RPA

 Slight A dependence in the 2p2h model

 Small RPA suppression
 Larger effect below the proton threshold (450 MeV)
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Total Uncertainties
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Ratio Uncertainties
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Generators
 Table here explaining the difference

 GENIE (2.8.4)
 MA=0.99 GeV

 Relativistic Fermi gas

 Resonant pion production: Rein-Seghal

 DIS (2003) Bodek Yang

 Koba Nielsen Olsen & Pythia

 Tuned 2p2h Valencia model

 Non resonant tune

 Geant 9.4.2

 FSI has A2/3
 scaling
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